Entropic Updating of Probabilities and Density Matrices

نویسنده

  • Kevin Vanslette
چکیده

We find that the standard relative entropy and the Umegaki entropy are designed for the purpose of inferentially updating probabilities and density matrices, respectively. From the same set of inferentially guided design criteria, both of the previously stated entropies are derived in parallel. This formulates a quantum maximum entropy method for the purpose of inferring density matrices in the absence of complete information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropic Updating of Probability and Density Matrices

We find that the standard relative entropy and the Umegaki entropy are designed for the 1 purpose of inferentially updating probability and density matrices respectively. From the same set of 2 inferentially guided design criteria, both of the previously stated entropies are derived in parallel. 3 This formulates a quantum maximum entropy method for the purpose of inferring density matrices 4 i...

متن کامل

Finite element model updating of a geared rotor system using particle swarm optimization for condition monitoring

In this paper, condition monitoring of a geared rotor system using finite element (FE) model updating and particle swarm optimization (PSO) method is onsidered. For this purpose, employing experimental data from the geared rotor system, an updated FE model is obtained. The geared rotor system under study consists of two shafts, four bearings, and two gears. To get the experimental data,  iezoel...

متن کامل

Damped DQE Model Updating of a Three-Story Frame Using Experimental Data

In this paper, following a two-stage methodology, the differential quadrature element (DQE) model of a three-story frame structure is updated for the vibration analysis. In the first stage, the mass and stiffness matrices are updated using the experimental natural frequencies. Then, having the updated mass and stiffness matrices, the structural damping matrix is updated to minimize the error be...

متن کامل

Properties of Nonnegative Hermitian Matrices and New Entropic Inequalities for Noncomposite Quantum Systems

We consider the probability distributions, spin (qudit)-state tomograms and density matrices of quantum states, and their information characteristics, such as Shannon and von Neumann entropies and q-entropies, from the viewpoints of both well-known purely mathematical features of nonnegative numbers and nonnegative matrices and their physical characteristics, such as entanglement and other quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017